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Abstract. A generalization of the circular and hyperbolic functions is proposed, based on the
Tsallis statistics and on a consistent generalization of the Euler formula. Some properties of the
presently proposeg-trigonometry are then investigated. The generalized functions are exact
solutions of a nonlinear oscillator. Original circular and hyperbolic relations are recovered as
theg — 1 limiting case.

1. Introduction

The g-analysis began at the end of the 19th century, as stated by McAnally [1], recalling
the work of Rogers [2] on the expansion of infinite products. Recently, however, its use
and importance has increased, owing to its relationship with quantum groups [3], and its
development brought together the need for the generalization of special functions to handle
nonlinear phenomena [4]. The problem of fp@scillator algebra [5], for example, has led

to g-analogues of many special functions, in particulargbhexponential and the-gamma
functions [1, 6], theg-trigonometric functions [7]g-Hermite andg-Laguerre polynomials

[3, 8], which are particular cases gfthypergeometric series.

The g-exponential, for example, is defined by [1, 9)(®) = ), x"/(n),!, with
(n)y! = ]_[;‘zl(j)q and(j), = (¢’ — 1)/(q — 1) and also(0),! = 1. In this paper we shall
explore adifferent g-deformation of the exponential function, that emerges from Tsallis
statistics.

Recently a connection between quantum groups and statistical mechanics has been
proposed by Tsallis [10-12] through the concept of a generalized entropy defined by [13]
S, = k(1 — Z;le,’?)/(q — 1), (9 € R), where{p;} are the probabilities associated
with W microstates (configurations, is a positive constant angl is the parameter that
generalizes the statistics. ¢fis set to unity, the usual Boltzmann expression is recovered:
S = —kzi‘llpi Inpi.

Tsallis statistics has been shown to preserve the Legendre transformation structure of
thermodynamics [14], and also to satisfy generalized forms of the Ehrenfest theorem [15],
von Neumann equation [16], H-theorem [17], among others. It has been appligg/yo L
[18] and correlated [19] anomalous diffusions, self-gravitating systems [20], turbulence in
pure electron plasma [21], cosmology and cosmic background radiation [22], solar neutrinos
[23], linear response theory [24], phonon-electron interactions [25], peculiar velocities of
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galaxies [26], nonlinear dynamical systems [27], with promising results. For an extensive
and up-to-date bibliography, see [28].
For the microcanonical ensemble, Tsallis entropy is given by [13]

_owti-1

S, =k (1)

1-gq
In the ¢ — 1 limit, the g-entropy goes taS; = kInW. The distribution law for the
canonical ensemble in the Tsallis formalism is proportional to

pi < [1— (1 —q)BE]YE 2

whereg is the Lagrange parameter afil;} is the energy spectrum. Equation (2) is reduced
to the usual Boltzmann distribution law; o eIﬁE", asqg — 1. Note that equations (1) and
(2) suggest a form to introducegalogarithm and aj-exponential function by defining [29]

exp, x =€ =[1+ (1—¢q)x]/*?. )

It is immediately verified that lpx and ¢ are inverse to each other. The ordinary logarithm
and exponential functions (here known asAdrand exp x, or €) are recovered whep — 1.

Here we are mainly concerned with the study of #peircular and g-hyperbolic
functions that the definitions given in equation (3) lead to. As a result, we show that
some such functions, introduced in this context of the Tsallis entropy, are solutions of a
nonlinear wave equation. Beyond thatgeneralizations of the Euler formula, Pythagoras
theorem and De Moivre theorem are deduced, as well as the roots gfsine and;-cosine
functions and the relation betweenrcircular andg-hyperbolic functions.

This paper is organized as follows. In section 2 we introducegtiegcular functions,
and establish some of its properties. In section 3 we extend this generalization to the
hyperbolic functions, and, finally, in section 4 we state the conclusions and final remarks.

2. Generalizedg-circular functions

If we expand expx in Taylor series aroundo = 0, we find

> 1
expx =1+ —On1x" (4)
n=1"""
with
0.(q)=1-929 —1)(3qg —2)...[ng — (n = 1)]. )

The g-exponential of an imaginary number ieads to an expression that reminds us of the
Euler formula in complex analysis and we may write

exp, (£ix) = cos, x £isin, x (6)
where cogx and siry x represent the generalizgdcosine and;-sine functions, defined by
N (1) Qo 1x% , N (—1)) Qgyx %t
cogx=1+) ———=—— sin, x = R e (4
¥ 2 @ V=l g @

In the following we are going to show that ¢os and siry x satisfy general forms of
the usual trigonometric relations. The ratio test shows that equations (4) and (7) converge
absolutely within the regiofx| < |1 —¢|~%. Intheq — 1 limit, 0, (1) =1,Vn € N and
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these equations turn to the Taylor expansions of the ordinary exponential, cosine and sine
functions, converging for-oo < x < oo. If we take theg-exponential written as
In [1+(1— q)X]}

1
1—4 VX#q—_l (8)

exp, x = exp [
and use the property of the 1-logarithm of a complex numbee |z|ei1¢, namely
Inyz =1Iny|z| + i¢, we find

oS, x = p,(x) Cos[p, (x)] sin, x = p,(x) sing[g, (x)] 9)
where
_ arctan[(1 —g¢)x]

pg(x) = {exp [ —x*}?  @u(x) 1—g (10)
We also have

tan, x = tan[g, (x)] 11)
where the generalizeg-tangent is defined as expected,

tan, x = sin, x : (12)

COS, x
According to our notation, ces, sim x, and tapx are the usual cosine, sine and
tangent functions. Equations (9)—(11) are interesting because they gltmsines g-sines
and g-tangents to be expressed in terms of known functions. gFhesine and;-sine are
composed by the product of two factors. The figst(x), is responsible for the amplitude,
and the second is responsible for the oscillatory nature of these functions. In particular,
observe that theg-sine function presents

im VX 1 wenr (13)
X—> X

The behaviour of cgst and sin x for different values ofy > 1 andg < 1 are illustrated
by figures 1 and 2.
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Figure 1. cos o1 x.
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Figure 3. Spiral diagrams fog = 1.01 (continuous curve) angl = 0.99 (broken curve).

The parametric representation of theosine and;-sine (x = cos, ¢, y = sin, ¢,z =1t)
represents a helix. Figure 3 shows the projection of the helix onthplane, as viewed
from the positivez-side, for different values of. The spirals go to zero fof > 1 and
diverge forg < 1. If ¢ — 1 the spiral degenerates into a circle (the usual circular functions).
The modulus of the radius vector of a poinbn the spiral is given by

cos, 1 + sirf 1 = exp, (ir) exp, (—it) = p}(1) (14)

that is the generalized Pythagoras theorem. These features keep a close analogy with the
usual trigonometric circle and suggest that we refer to theng-apiral functions The

number of rotations of these spiral diagramdfiiste, owing to the fact that there is an
absolute maximum value fag, (1),

max __

. T 1
o7 im0 =5 |7 49
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so that cogt and siry ¢ oscillate indefinitely only ifg = 1. The number of roots of the
g-cosine (V.) and that of thes-sine (V) are found to be

chz[int<ﬁ>—int(; ! )} NS=2int(%‘ﬁ>+l (16)

1-¢q
where intx) stands for the largest integerx. It means that cgsc has no roots foy < 0
or g > 2; sin, x presents only one roatx = 0) for ¢ < 0.5 org > 1.5. Within these
ranges, cosx and sinp x present a finite number of roots (infinite number of roots occurs
only for ¢ = 1).
It is straightforward to show thaf, (x) = equ(ikx) is anexactsolution of the following
nonlinear oscillator differential equation

d2 v
TOL 4 yap =0 a7
with
g 2 2)/2
q = > +1 k _—v(u—i—v)' (18)

Wheng — 1, we recover the simple harmonic oscillator. It is worth stressing thagtixcos
and sin x, taken individually, arenot solutions of equation (17), but only if combined as
equation (6).

If we take into account the fact thaexp, x)* = exp,_;_,,,(ax), and dexpx/dx =
(exp, x)?, together with equation (6), the derivatives of gosand sinp x may be expressed
as

d . d .

a COS, x = —SiM_1/,(qx) & sin, x = C0%_1/4(qx). (29)
We also have the generalization of the De Moivre theorem [30]:

(Cos, x L isin, x)* = COS_1—g)/a(ax) £iSiM_a_g)/a(ax). (20)

We are now going to express tlgeEuler formula for a complex number= x + iy.
In order to simplify the equations, let us introduce the funcgpr= In; € which satisfies
&1 = z. If we take the 1l-exponential on both sides, we may express the generalized Euler
formula of a complex number as:

exp, z = (eXpy x4)(CoS ¥, +ising ) (21)
where x, andy, are defined in such a way that = x, + iy, that is

_ |n1 |a)q|

arg(wgy)
Xqg = =

= 2% - - <
1 Yy 14 T<Q-qy, <7 (22)
with w, =1+ (1—¢g)z.

Another way to express thg-exponential of a complex number is
y ‘o y
— > — - |t 23
exp, z = exp, x {cosl [1+ (1_q)x} + isin, [1+ (l—q)x:H (23)
This expression is valid provided that expis real andvx # (g — 1)~1. This happens

for Re(w,) > 0, or for integer values of /A1 — ¢g). Equations (21) and (23) are the
g-generalized Euler formula for complex numbers. Equating one another, it results in

(exp, x) cos, [ﬁ] = (eXPy, x4) COS Yy (24)
(exp, x) sin, [ﬁ] = (EXP, Xq) SiM ¥y (25)
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Dividing (25) by (24), we find

y
tan, [1+(1_q)x}_tan11/fq. (26)

Equations (6), (9) and (11) are particular cases of equations (23)—(26) respectively, for
a pure imaginary numbey iwhere exp x,/ exp, x is the general form op, (x), andy, is
that of ¢, (x) (equations (10)).

The comparison of equation (21) with the ordinary Euler formyla=ee€j(cos y +
ising y) gives us an interesting remark: both&nd ¢ may be split into two factors, one
responsible for the amplitude and the other responsible for the oscillations. In ordinary
(¢ = 1) functions, the real and imaginary parts of a complex number are decoupled, so to
say, whereag # 1 introduces a kind ofouplingbetweenx andy, and both the amplitude
and the oscillator factors depend on both real and imaginary patts of

3. Generalizedg-Hyperbolic functions

We are naturally tempted to extend these ideas to hyperbolic functions. So, let us assume
by definition

exp, (x) + exp, (—x) _exp, () — exp,(—x)

cosh x = 2 sinh, x = 2 . (27)
These definitions lead us to the following relation:

costf x — sinlt x = exp, (x) exp, (—x) = exp,[—(1 — ¢)x7] - (28)
The De Moivre theorem for the-hyperbolic functions is given by

(cosh x + sinh, x)* = cosh_1_q)/q(ax) + SiNh_1_g)/4(ax) (29)

and the derivatives of thg-hyperbolic functions are

d _ d .
O cosh x = sinh_1/,(gx) a sinh, x = cosh_1/,(gx) - (30)

The connection between the usual circular and hyperbolic functions is established by
the definition of such functions of complex numbers. Here we are going to proceed in a
similar way, and we straightforwardly find:

1
coshy z = > cosh x {0051 [m} + oy [mn
1 _ y . y
+§|smhﬂ {smq [m} + sin, [m“
1 y .
Bt Gl Ferrerrd ] Fererrrd |
1 _ y . y
_§|Coshlx {qu [m} — Sin, [mi” (31)
. 1. Y Y
sinh, z = > sinh, x {COS,' [m} + Ccog, [m:“
1 _ y . y
+§|coshl X {smq [m} + sin, [m“

1 y >
-3 cosh x {COSI [m} —coy [m“
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1. . . y . y
_E'S'”h‘fx{s'n‘f [1—<1—q>x} — S |:1+(1—q)x:|} (32)
with x # |1 —¢|L.

4. Conclusions

We have developed a generalization of the usual circular and hyperbolic functions, based
on a g-exponential suggested by the Tsallis formalism of statistical mechanics. Such a
generalization is a consisteptdeformation of the logarithmic and exponential functions.

We have established some basic relations for the proppggdonometry, for example,
the Euler formula, the Pythagoras theorem, the De Moivre theorem, the relation between
g-circular andg-hyperbolic functions. These relations keep a close analogy with the usual
ones and are reduced to them in the> 1 limit.

The g-circular functions present oscillatory behaviour only within a range of values of
q (0 < g < 2 for theg-cosine and ® < ¢ < 1.5 for the ¢g-sine). The number of roots of
these functions is finite, exceptdf= 1, when they present an infinite number of roots.

We found thatg,(x) = exp,(ikx) is an exact solution of the nonlinear oscillator
[6°]" + y?¢"* = 0, whereq and k are functions ofu, v and y. The oscillations damp
for u > v (¢ > 1) and diverge foru < v (¢ < 1), when|x| — oco.

The generalized Euler formula may be given by a product of an amplitude factor and
an oscillatory factor, but, in contrast to the usual Euler formblath the amplitude and
oscillatory factors of g depend orboth the real and imaginary parts of

Hopefully, the present generalization of the circular and hyperbolic functions, as well
as their associated properties, can play a useful role in the actively studied Tsallis statistics.

Acknowledgments

| am grateful for stimulating discussions with Kleber C Mundim, Constantino Tsallis, Thierry
J Lemaire, Paulo Miranda, Ademir E Santana,&J@arlos Pinto, Aurino Ribeiro Filho,
Arthur Matos and Renio S Mendes.

References

[1] McAnally D S 1995J. Math. Phys36 546-73
[2] Roges L J 1894Proc. London Math. So@5 318-43
[3] Floreanini R and Vinet L 1991 ett. Math. Phys22 45-54
[4] Floreanini R and Vinet L 199&nn. Phys22153-70
[5] Biedenhan L C 1989J. Phys. A: Math. Gern22 L873-8
Macfarlare A J 1989J. Phys. A: Math. Gern22 4581-8
Floreanini R and Vinet L 199®hys. LettA 180 393-401
Floreanini R, LeTourneux J and Vinet L 1995Phys. A: Math. Gern28 L287-93
[6] Atakishiyev N M 1996 J. Phys. A: Math. Gern29 L223-7
[7] Atakishiyev N M 1996 J. Phys. A: Math. GerR9 7177-81
[8] Atakishiyev N M and Feinsilver P 1998. Phys. A: Math. Ger29 1659-64
[9] Kassel C 1995%Quantum GroupgNew York: Springer)
[10] Tsallis C 1994Phys. LettA 195329-34
[11] Erzan A 1997Phys. LettA 225235-8
[12] Abe S 1997Phys. LettA 224 326-30
[13] Tsallis C 1988J. Stat. Phys52 479-87
[14] Curad E M F and Ballis C 1991J. Phys. A: Math. Gen24 L69-72
Curac E M F and Ballis C 1991J. Phys. A: Math. Ger24 3187 (corrigendum)



5288 E P Borges

(15]
(16]
(17]

(28]

(19]

(20]
[21]

[22]

(23]
[24]
[25]
(26]

(27]

(28]
(29]
(30]

Curacb E M F and Ballis C 1992]. Phys. A: Math. Ger25 1019 (corrigendum)

Plastio A R and Plastino A 199®hys. LettA 177177-9

Plastimo A R and Plastino A 199#hysica202A 438-48

Mariz A M 1992 Phys. LettA 165409-11

Ramsha J D 1993Phys. LettA 175169-70

Ramsha J D 1993Phys. LettA 175171-2

Alemary P A and Zanett D H 1994Phys. RevE 49 R956-8

Zanete D H and Alemap P A 1995Phys. Rev. Letfr5 366-8

Tsallis C, Ley S V F, deSoua A M C andMaynard R 199%hys. Rev. Let{r5 3589-93

Tsallis C, Lewy S V F, deSoua A M C andMaynard R 1996Phys. Rev. Letfr7 5442 (erratum)

Cacere M O and Budd C E 1996Phys. Rev. Letfr7 2589

Zanete D H and Alemawp P A 1996Phys. Rev. Letf77 2590

Plastio A R and Plastino A 199®hysica222A 347-54

Tsallis C and Bukma D J 1996Phys. RevE 54 R2197-200

Compte A and Jou D 1998. Phys. A: Math. Ger29 4321-9

Stariob D A 1997 Phys. RevE 55 4806—9

Plastimo A R and Plastino A 199®hys. LettA 174 384—-6

Boghosia B M 1996 Phys. RevE 53 4754—63

Anteneodo C and Tsallis C 1997 Mol. Liq. 71 255-67

Tsallis C, Sa Barret F C and Loh E D 199%hys. RevE 52 1447-51

Plastino A R, Plastino A and Vucetich H 1998ys. LettA 206 42-6

Hamity V H and Barrac D E 1996Phys. Rev. Let{76 4664—6

Torres D F, Vucetich H and Plastino A 19%hys. Rev. Let{r9 1588-90

Kaniadakis G, Lavagno A and Quarati P 1996ys. Lett.B 369 308-12

RajagophA K 1996 Phys. Rev. Letfr6 3469-73

Koponen | 1997Phys. RevB 55 7759-62

Lavagno A, Kaniadakis G, Rego-Monteiro M, Quarati P and Tsallis C 18&8ophys. Lett. Commui35
449-55

Tsallis C, Plastio A R and Zheg W M 1997 Chaos Solitons Fractal8 885-91

Cosa U M S, Lyra M L, Plastio A R and Tsallis C 199Phys. RevE 56 245-50

Lyra M L and Tsallis C 1998hys. Rev. Lett30 53-6

Papa A R R and Jallis C 1998Phys. RevE 57 3923-7

http://tsallis.cat.cbpf.br/biblio.htm

Tsallis C 1994Quimica Noval7 468-71

Abramowitz M and Stegu | A 1964 Handbook of Mathematical Functiorislew York: Dover)



