

Home Search Collections Journals About Contact us My IOPscience

On a *q*-generalization of circular and hyperbolic functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1998 J. Phys. A: Math. Gen. 31 5281 (http://iopscience.iop.org/0305-4470/31/23/011) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.122 The article was downloaded on 02/06/2010 at 06:55

Please note that terms and conditions apply.

On a q-generalization of circular and hyperbolic functions

Ernesto P Borges†

Centro Brasileiro de Pesquisas Físicas, R Dr Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil

Received 5 February 1998

Abstract. A generalization of the circular and hyperbolic functions is proposed, based on the Tsallis statistics and on a consistent generalization of the Euler formula. Some properties of the presently proposed q-trigonometry are then investigated. The generalized functions are exact solutions of a nonlinear oscillator. Original circular and hyperbolic relations are recovered as the $q \rightarrow 1$ limiting case.

1. Introduction

The *q*-analysis began at the end of the 19th century, as stated by McAnally [1], recalling the work of Rogers [2] on the expansion of infinite products. Recently, however, its use and importance has increased, owing to its relationship with quantum groups [3], and its development brought together the need for the generalization of special functions to handle nonlinear phenomena [4]. The problem of the *q*-oscillator algebra [5], for example, has led to *q*-analogues of many special functions, in particular the *q*-exponential and the *q*-gamma functions [1, 6], the *q*-trigonometric functions [7], *q*-Hermite and *q*-Laguerre polynomials [3, 8], which are particular cases of *q*-hypergeometric series.

The q-exponential, for example, is defined by $[1, 9] e_q(x) = \sum_n x^n/(n)_q!$, with $(n)_q! = \prod_{j=1}^n (j)_q$ and $(j)_q = (q^j - 1)/(q - 1)$ and also $(0)_q! = 1$. In this paper we shall explore a *different* q-deformation of the exponential function, that emerges from Tsallis statistics.

Recently a connection between quantum groups and statistical mechanics has been proposed by Tsallis [10–12] through the concept of a generalized entropy defined by [13] $S_q \equiv k(1 - \sum_{i=1}^{W} p_i^q)/(q-1)$, $(q \in \mathcal{R})$, where $\{p_i\}$ are the probabilities associated with W microstates (configurations), k is a positive constant and q is the parameter that generalizes the statistics. If q is set to unity, the usual Boltzmann expression is recovered: $S_1 = -k \sum_{i=1}^{W} p_i \ln p_i$.

Tsallis statistics has been shown to preserve the Legendre transformation structure of thermodynamics [14], and also to satisfy generalized forms of the Ehrenfest theorem [15], von Neumann equation [16], H-theorem [17], among others. It has been applied to Lévy [18] and correlated [19] anomalous diffusions, self-gravitating systems [20], turbulence in pure electron plasma [21], cosmology and cosmic background radiation [22], solar neutrinos [23], linear response theory [24], phonon–electron interactions [25], peculiar velocities of

0305-4470/98/235281+08\$19.50 © 1998 IOP Publishing Ltd

[†] Also at: Departamento de Engenharia Química, Escola Politécnica, Universidade Federal da Bahia, R Aristides Novis 2, 40210-630, Salvador, BA, Brazil. E-mail address: ernesto@cat.cbpf.br

galaxies [26], nonlinear dynamical systems [27], with promising results. For an extensive and up-to-date bibliography, see [28].

For the microcanonical ensemble, Tsallis entropy is given by [13]

$$S_q = k \frac{W^{1-q} - 1}{1-q}.$$
 (1)

In the $q \rightarrow 1$ limit, the q-entropy goes to $S_1 = k \ln W$. The distribution law for the canonical ensemble in the Tsallis formalism is proportional to

$$p_i \propto [1 - (1 - q)\beta E_i]^{1/(1 - q)} \tag{2}$$

where β is the Lagrange parameter and $\{E_i\}$ is the energy spectrum. Equation (2) is reduced to the usual Boltzmann distribution law, $p_i \propto e_1^{-\beta E_i}$, as $q \to 1$. Note that equations (1) and (2) suggest a form to introduce a *q*-logarithm and a *q*-exponential function by defining [29]

$$\ln_q x \equiv \frac{x^{1-q} - 1}{1-q} \qquad \exp_q x \equiv e_q^x = [1 + (1-q)x]^{1/(1-q)}.$$
 (3)

It is immediately verified that $\ln_q x$ and e_q^x are inverse to each other. The ordinary logarithm and exponential functions (here known as $\ln_1 x$ and $\exp_1 x$, or e_1^x) are recovered when $q \to 1$.

Here we are mainly concerned with the study of the q-circular and q-hyperbolic functions that the definitions given in equation (3) lead to. As a result, we show that some such functions, introduced in this context of the Tsallis entropy, are solutions of a nonlinear wave equation. Beyond that, q-generalizations of the Euler formula, Pythagoras theorem and De Moivre theorem are deduced, as well as the roots of the q-sine and q-cosine functions and the relation between q-circular and q-hyperbolic functions.

This paper is organized as follows. In section 2 we introduce the q-circular functions, and establish some of its properties. In section 3 we extend this generalization to the hyperbolic functions, and, finally, in section 4 we state the conclusions and final remarks.

2. Generalized q-circular functions

If we expand $\exp_q x$ in Taylor series around $x_0 = 0$, we find

$$\exp_q x = 1 + \sum_{n=1}^{\infty} \frac{1}{n!} Q_{n-1} x^n$$
(4)

with

$$Q_n(q) \equiv 1 \cdot q(2q-1)(3q-2) \dots [nq-(n-1)].$$
(5)

The q-exponential of an imaginary number ix leads to an expression that reminds us of the Euler formula in complex analysis and we may write

$$\exp_q(\pm ix) = \cos_q x \pm i \sin_q x \tag{6}$$

where $\cos_q x$ and $\sin_q x$ represent the generalized q-cosine and q-sine functions, defined by

$$\cos_q x \equiv 1 + \sum_{j=1}^{\infty} \frac{(-1)^j \mathcal{Q}_{2j-1} x^{2j}}{(2j)!} \qquad \sin_q x \equiv \sum_{j=0}^{\infty} \frac{(-1)^j \mathcal{Q}_{2j} x^{2j+1}}{(2j+1)!}.$$
 (7)

In the following we are going to show that $\cos_q x$ and $\sin_q x$ satisfy general forms of the usual trigonometric relations. The ratio test shows that equations (4) and (7) converge absolutely within the region $|x| < |1 - q|^{-1}$. In the $q \to 1$ limit, $Q_n(1) = 1$, $\forall n \in \mathcal{N}$ and

these equations turn to the Taylor expansions of the ordinary exponential, cosine and sine functions, converging for $-\infty < x < \infty$. If we take the *q*-exponential written as

$$\exp_q x = \exp_1 \left[\frac{\ln_1 [1 + (1 - q)x]}{1 - q} \right] \qquad \forall x \neq \frac{1}{q - 1}$$
 (8)

and use the property of the 1-logarithm of a complex number $z = |z|e_1^{i\phi}$, namely $\ln_1 z = \ln_1 |z| + i\phi$, we find

$$\cos_q x = \rho_q(x) \cos_1[\varphi_q(x)] \qquad \sin_q x = \rho_q(x) \sin_1[\varphi_q(x)] \tag{9}$$

where

$$\rho_q(x) = \{ \exp_q[(1-q)x^2] \}^{1/2} \qquad \varphi_q(x) = \frac{\arctan_1[(1-q)x]}{1-q} \,. \tag{10}$$

We also have

$$\tan_q x = \tan_1[\varphi_q(x)] \tag{11}$$

where the generalized q-tangent is defined as expected,

$$\tan_q x \equiv \frac{\sin_q x}{\cos_q x} \,. \tag{12}$$

According to our notation, $\cos_1 x$, $\sin_1 x$, and $\tan_1 x$ are the usual cosine, sine and tangent functions. Equations (9)–(11) are interesting because they allow *q*-cosines, *q*-sines and *q*-tangents to be expressed in terms of known functions. The *q*-cosine and *q*-sine are composed by the product of two factors. The first, $\rho_q(x)$, is responsible for the amplitude, and the second is responsible for the oscillatory nature of these functions. In particular, observe that the *q*-sine function presents

$$\lim_{x \to 0} \frac{\sin_q x}{x} = 1 \qquad \forall q \in \mathcal{R}.$$
(13)

The behaviour of $\cos_q x$ and $\sin_q x$ for different values of q > 1 and q < 1 are illustrated by figures 1 and 2.

Figure 1. cos_{1.01} *x*.

Figure 2. sin_{0.99} *x*.

Figure 3. Spiral diagrams for q = 1.01 (continuous curve) and q = 0.99 (broken curve).

The parametric representation of the q-cosine and q-sine $(x = \cos_q t, y = \sin_q t, z = t)$ represents a helix. Figure 3 shows the projection of the helix on the xy-plane, as viewed from the positive z-side, for different values of q. The spirals go to zero for q > 1 and diverge for q < 1. If $q \rightarrow 1$ the spiral degenerates into a circle (the usual circular functions). The modulus of the radius vector of a point t on the spiral is given by

$$\cos_q^2 t + \sin_q^2 t = \exp_q(\mathbf{i}t) \exp_q(-\mathbf{i}t) = \rho_q^2(t)$$
(14)

that is the generalized Pythagoras theorem. These features keep a close analogy with the usual trigonometric circle and suggest that we refer to them as *q*-spiral functions. The number of rotations of these spiral diagrams is *finite*, owing to the fact that there is an absolute maximum value for $\varphi_q(t)$,

$$\varphi_q^{\max} = \lim_{t \to \infty} \varphi_q(t) = \frac{\pi}{2} \left| \frac{1}{1 - q} \right| \tag{15}$$

so that $\cos_q t$ and $\sin_q t$ oscillate indefinitely only if q = 1. The number of roots of the q-cosine (N_c) and that of the q-sine (N_s) are found to be

$$N_c = 2\left[\operatorname{int}\left(\left|\frac{1}{1-q}\right|\right) - \operatorname{int}\left(\frac{1}{2}\left|\frac{1}{1-q}\right|\right)\right] \qquad N_s = 2 \operatorname{int}\left(\frac{1}{2}\left|\frac{1}{1-q}\right|\right) + 1 \tag{16}$$

where int(x) stands for the largest integer $\leq x$. It means that $\cos_q x$ has no roots for $q \leq 0$ or $q \geq 2$; $\sin_q x$ presents only one root (x = 0) for $q \leq 0.5$ or $q \geq 1.5$. Within these ranges, $\cos_q x$ and $\sin_q x$ present a finite number of roots (infinite number of roots occurs only for q = 1).

It is straightforward to show that $\phi_q(x) = \exp_q(ikx)$ is an *exact* solution of the following nonlinear oscillator differential equation

$$\frac{d^2[\phi(x)]^{\nu}}{dx^2} + \gamma^2[\phi(x)]^{\mu} = 0$$
(17)

with

$$q = \frac{\mu - \nu}{2} + 1 \qquad k^2 = \frac{2\gamma^2}{\nu(\mu + \nu)}.$$
(18)

When $q \rightarrow 1$, we recover the simple harmonic oscillator. It is worth stressing that $\cos_q x$ and $\sin_q x$, taken individually, are *not* solutions of equation (17), but only if combined as equation (6).

If we take into account the fact that $(\exp_q x)^a = \exp_{1-(1-q)/a}(ax)$, and $\deg_q x/dx = (\exp_q x)^q$, together with equation (6), the derivatives of $\cos_q x$ and $\sin_q x$ may be expressed as

$$\frac{\mathrm{d}}{\mathrm{d}x}\cos_q x = -\sin_{2-1/q}(qx) \qquad \frac{\mathrm{d}}{\mathrm{d}x}\sin_q x = \cos_{2-1/q}(qx). \tag{19}$$

We also have the generalization of the De Moivre theorem [30]:

$$(\cos_q x \pm i \sin_q x)^a = \cos_{1-(1-q)/a}(ax) \pm i \sin_{1-(1-q)/a}(ax).$$
(20)

We are now going to express the *q*-Euler formula for a complex number z = x + iy. In order to simplify the equations, let us introduce the function $\zeta_q \equiv \ln_1 e_q^z$ which satisfies $\zeta_1 = z$. If we take the 1-exponential on both sides, we may express the generalized Euler formula of a complex number *z* as:

$$\exp_q z = (\exp_1 \chi_q)(\cos_1 \psi_q + i \sin_1 \psi_q)$$
(21)

where χ_q and ψ_q are defined in such a way that $\zeta_q = \chi_q + i\psi_q$, that is

$$\chi_q \equiv \frac{\ln_1 |\omega_q|}{1-q} \qquad \psi_q \equiv \frac{\arg(\omega_q)}{1-q} \qquad -\pi < (1-q)\psi_q \leqslant \pi \tag{22}$$

with $\omega_q = 1 + (1 - q)z$.

Another way to express the q-exponential of a complex number is

$$\exp_q z = \exp_q x \left\{ \cos_q \left[\frac{y}{1 + (1 - q)x} \right] + i \sin_q \left[\frac{y}{1 + (1 - q)x} \right] \right\}.$$
(23)

This expression is valid provided that $\exp_q x$ is real and $\forall x \neq (q-1)^{-1}$. This happens for $\operatorname{Re}(\omega_q) > 0$, or for integer values of 1/(1-q). Equations (21) and (23) are the *q*-generalized Euler formula for complex numbers. Equating one another, it results in

$$(\exp_q x)\cos_q \left[\frac{y}{1+(1-q)x}\right] = (\exp_1 \chi_q)\cos_1 \psi_q$$
(24)

$$(\exp_q x) \sin_q \left[\frac{y}{1 + (1 - q)x} \right] = (\exp_1 \chi_q) \sin_1 \psi_q.$$
⁽²⁵⁾

5286 E P Borges

Dividing (25) by (24), we find

$$\tan_q \left[\frac{y}{1 + (1 - q)x} \right] = \tan_1 \psi_q. \tag{26}$$

Equations (6), (9) and (11) are particular cases of equations (23)–(26) respectively, for a pure imaginary number iy where $\exp_1 \chi_q / \exp_q x$ is the general form of $\rho_q(x)$, and ψ_q is that of $\varphi_q(x)$ (equations (10)).

The comparison of equation (21) with the ordinary Euler formula $e_1^z = e_1^x(\cos_1 y + i \sin_1 y)$ gives us an interesting remark: both e_1^z and e_q^z may be split into two factors, one responsible for the amplitude and the other responsible for the oscillations. In ordinary (q = 1) functions, the real and imaginary parts of a complex number are decoupled, so to say, whereas $q \neq 1$ introduces a kind of *coupling* between x and y, and both the amplitude and the oscillator factors depend on both real and imaginary parts of z.

3. Generalized q-Hyperbolic functions

We are naturally tempted to extend these ideas to hyperbolic functions. So, let us assume by definition

These definitions lead us to the following relation:

$$\cosh_q^2 x - \sinh_q^2 x = \exp_q(x) \exp_q(-x) = \exp_q[-(1-q)x^2]$$
 (28)

The De Moivre theorem for the q-hyperbolic functions is given by

$$(\cosh_q x + \sinh_q x)^a = \cosh_{1-(1-q)/a}(ax) + \sinh_{1-(1-q)/a}(ax)$$
(29)

and the derivatives of the q-hyperbolic functions are

$$\frac{\mathrm{d}}{\mathrm{d}x}\cosh_q x = \sinh_{2-1/q}(qx) \qquad \frac{\mathrm{d}}{\mathrm{d}x}\sinh_q x = \cosh_{2-1/q}(qx) \,. \tag{30}$$

The connection between the usual circular and hyperbolic functions is established by the definition of such functions of complex numbers. Here we are going to proceed in a similar way, and we straightforwardly find:

$$\begin{aligned} \cosh_{q} z &= \frac{1}{2} \cosh_{q} x \left\{ \cos_{q} \left[\frac{y}{1 - (1 - q)x} \right] + \cos_{q} \left[\frac{y}{1 + (1 - q)x} \right] \right\} \\ &+ \frac{1}{2} i \sinh_{q} x \left\{ \sin_{q} \left[\frac{y}{1 - (1 - q)x} \right] + \sin_{q} \left[\frac{y}{1 + (1 - q)x} \right] \right\} \\ &- \frac{1}{2} \sinh_{q} x \left\{ \cos_{q} \left[\frac{y}{1 - (1 - q)x} \right] - \cos_{q} \left[\frac{y}{1 + (1 - q)x} \right] \right\} \\ &- \frac{1}{2} i \cosh_{q} x \left\{ \sin_{q} \left[\frac{y}{1 - (1 - q)x} \right] - \sin_{q} \left[\frac{y}{1 + (1 - q)x} \right] \right\} \end{aligned}$$
(31)
$$\sinh_{q} z &= \frac{1}{2} \sinh_{q} x \left\{ \cos_{q} \left[\frac{y}{1 - (1 - q)x} \right] + \cos_{q} \left[\frac{y}{1 + (1 - q)x} \right] \right\} \\ &+ \frac{1}{2} i \cosh_{q} x \left\{ \sin_{q} \left[\frac{y}{1 - (1 - q)x} \right] + \sin_{q} \left[\frac{y}{1 + (1 - q)x} \right] \right\} \\ &- \frac{1}{2} \cosh_{q} x \left\{ \cos_{q} \left[\frac{y}{1 - (1 - q)x} \right] - \cos_{q} \left[\frac{y}{1 + (1 - q)x} \right] \right\} \end{aligned}$$

On a q-generalization of circular and hyperbolic functions 5287

$$-\frac{1}{2}\mathrm{i}\,\mathrm{sinh}_q\,x\left\{\mathrm{sin}_q\left[\frac{y}{1-(1-q)x}\right]-\mathrm{sin}_q\left[\frac{y}{1+(1-q)x}\right]\right\}\tag{32}$$

with $x \neq |1 - q|^{-1}$.

4. Conclusions

We have developed a generalization of the usual circular and hyperbolic functions, based on a q-exponential suggested by the Tsallis formalism of statistical mechanics. Such a generalization is a consistent q-deformation of the logarithmic and exponential functions.

We have established some basic relations for the proposed q-trigonometry, for example, the Euler formula, the Pythagoras theorem, the De Moivre theorem, the relation between q-circular and q-hyperbolic functions. These relations keep a close analogy with the usual ones and are reduced to them in the $q \rightarrow 1$ limit.

The *q*-circular functions present oscillatory behaviour only within a range of values of q (0 < q < 2 for the *q*-cosine and 0.5 < q < 1.5 for the *q*-sine). The number of roots of these functions is finite, except if q = 1, when they present an infinite number of roots.

We found that $\phi_q(x) = \exp_q(ikx)$ is an exact solution of the nonlinear oscillator $[\phi^{\nu}]'' + \gamma^2 \phi^{\mu} = 0$, where q and k are functions of μ , ν and γ . The oscillations damp for $\mu > \nu$ (q > 1) and diverge for $\mu < \nu$ (q < 1), when $|x| \to \infty$.

The generalized Euler formula may be given by a product of an amplitude factor and an oscillatory factor, but, in contrast to the usual Euler formula, *both* the amplitude and oscillatory factors of e_a^z depend on *both* the real and imaginary parts of z.

Hopefully, the present generalization of the circular and hyperbolic functions, as well as their associated properties, can play a useful role in the actively studied Tsallis statistics.

Acknowledgments

I am grateful for stimulating discussions with Kleber C Mundim, Constantino Tsallis, Thierry J Lemaire, Paulo Miranda, Ademir E Santana, José Carlos Pinto, Aurino Ribeiro Filho, Arthur Matos and Renio S Mendes.

References

- [1] McAnally D S 1995 J. Math. Phys. 36 546-73
- [2] Rogers L J 1894 Proc. London Math. Soc. 25 318-43
- [3] Floreanini R and Vinet L 1991 Lett. Math. Phys. 22 45-54
- [4] Floreanini R and Vinet L 1993 Ann. Phys. 221 53-70
- [5] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873–8 Macfarlane A J 1989 J. Phys. A: Math. Gen. 22 4581–8 Floreanini R and Vinet L 1993 Phys. Lett. A 180 393–401 Floreanini R, LeTourneux J and Vinet L 1995 J. Phys. A: Math. Gen. 28 L287–93
- [6] Atakishiyev N M 1996 J. Phys. A: Math. Gen. 29 L223-7
- [7] Atakishiyev N M 1996 J. Phys. A: Math. Gen. 29 7177-81
- [8] Atakishiyev N M and Feinsilver P 1996 J. Phys. A: Math. Gen. 29 1659-64
- [9] Kassel C 1995 Quantum Groups (New York: Springer)
- [10] Tsallis C 1994 Phys. Lett. A 195 329-34
- [11] Erzan A 1997 Phys. Lett. A 225 235-8
- [12] Abe S 1997 Phys. Lett. A 224 326–30
- [13] Tsallis C 1988 J. Stat. Phys. 52 479-87
- [14] Curado E M F and Tsallis C 1991 J. Phys. A: Math. Gen. 24 L69–72 Curado E M F and Tsallis C 1991 J. Phys. A: Math. Gen. 24 3187 (corrigendum)

Curado E M F and Tsallis C 1992 J. Phys. A: Math. Gen. 25 1019 (corrigendum)

- [15] Plastino A R and Plastino A 1993 Phys. Lett. A 177 177-9
- [16] Plastino A R and Plastino A 1994 Physica 202A 438-48
- [17] Mariz A M 1992 Phys. Lett. A 165 409–11
 Ramshaw J D 1993 Phys. Lett. A 175 169–70
 Ramshaw J D 1993 Phys. Lett. A 175 171–2
- [18] Alemany P A and Zanette D H 1994 Phys. Rev. E 49 R956–8
 Zanette D H and Alemany P A 1995 Phys. Rev. Lett. 75 366-8
 Tsallis C, Levy S V F, de Souza A M C and Maynard R 1995 Phys. Rev. Lett. 75 3589–93
 Tsallis C, Levy S V F, de Souza A M C and Maynard R 1996 Phys. Rev. Lett. 77 5442 (erratum)
 Caceres M O and Budde C E 1996 Phys. Rev. Lett. 77 2589
 Zanette D H and Alemany P A 1996 Phys. Rev. Lett. 77 2590
- [19] Plastino A R and Plastino A 1995 *Physica* 222A 347-54
 Tsallis C and Bukman D J 1996 *Phys. Rev.* E 54 R2197–200
 Compte A and Jou D 1996 *J. Phys. A: Math. Gen.* 29 4321–9
 Stariolo D A 1997 *Phys. Rev.* E 55 4806–9
- [20] Plastino A R and Plastino A 1993 Phys. Lett. A 174 384-6
- [21] Boghosian B M 1996 Phys. Rev. E 53 4754–63
 Anteneodo C and Tsallis C 1997 J. Mol. Liq. 71 255–67
 [22] T. W. G. D. L. C. L. L. L. E. D. 1995 Phys. Rev. E 52
- [22] Tsallis C, Sa Barreto F C and Loh E D 1995 *Phys. Rev.* E **52** 1447–51 Plastino A R, Plastino A and Vucetich H 1995 *Phys. Lett.* A **206** 42-6 Hamity V H and Barraco D E 1996 *Phys. Rev. Lett.* **76** 4664–6 Torres D F, Vucetich H and Plastino A 1997 *Phys. Rev. Lett.* **79** 1588–90
- [23] Kaniadakis G, Lavagno A and Quarati P 1996 Phys. Lett. B 369 308-12
- [24] Rajagopal A K 1996 Phys. Rev. Lett. 76 3469-73
- [25] Koponen I 1997 Phys. Rev. B 55 7759-62
- [26] Lavagno A, Kaniadakis G, Rego-Monteiro M, Quarati P and Tsallis C 1998 Astrophys. Lett. Commun. 35 449–55
- [27] Tsallis C, Plastino A R and Zheng W M 1997 Chaos Solitons Fractals 8 885–91
 Costa U M S, Lyra M L, Plastino A R and Tsallis C 1997 Phys. Rev. E 56 245–50
 Lyra M L and Tsallis C 1998 Phys. Rev. Lett. 80 53–6
 Papa A R R and Tsallis C 1998 Phys. Rev. E 57 3923–7
- [28] http://tsallis.cat.cbpf.br/biblio.htm
- [29] Tsallis C 1994 Quimica Nova 17 468-71
- [30] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions (New York: Dover)