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Abstract. A generalization of the circular and hyperbolic functions is proposed, based on the
Tsallis statistics and on a consistent generalization of the Euler formula. Some properties of the
presently proposedq-trigonometry are then investigated. The generalized functions are exact
solutions of a nonlinear oscillator. Original circular and hyperbolic relations are recovered as
the q → 1 limiting case.

1. Introduction

The q-analysis began at the end of the 19th century, as stated by McAnally [1], recalling
the work of Rogers [2] on the expansion of infinite products. Recently, however, its use
and importance has increased, owing to its relationship with quantum groups [3], and its
development brought together the need for the generalization of special functions to handle
nonlinear phenomena [4]. The problem of theq-oscillator algebra [5], for example, has led
to q-analogues of many special functions, in particular theq-exponential and theq-gamma
functions [1, 6], theq-trigonometric functions [7],q-Hermite andq-Laguerre polynomials
[3, 8], which are particular cases ofq-hypergeometric series.

The q-exponential, for example, is defined by [1, 9] eq(x) =
∑

n x
n/(n)q !, with

(n)q ! = ∏n
j=1(j)q and (j)q = (qj − 1)/(q − 1) and also(0)q ! = 1. In this paper we shall

explore adifferent q-deformation of the exponential function, that emerges from Tsallis
statistics.

Recently a connection between quantum groups and statistical mechanics has been
proposed by Tsallis [10–12] through the concept of a generalized entropy defined by [13]
Sq ≡ k(1 − ∑W

i=1p
q

i )/(q − 1), (q ∈ R), where {pi} are the probabilities associated
with W microstates (configurations),k is a positive constant andq is the parameter that
generalizes the statistics. Ifq is set to unity, the usual Boltzmann expression is recovered:
S1 = −k

∑W
i=1pi lnpi .

Tsallis statistics has been shown to preserve the Legendre transformation structure of
thermodynamics [14], and also to satisfy generalized forms of the Ehrenfest theorem [15],
von Neumann equation [16], H-theorem [17], among others. It has been applied to Lévy
[18] and correlated [19] anomalous diffusions, self-gravitating systems [20], turbulence in
pure electron plasma [21], cosmology and cosmic background radiation [22], solar neutrinos
[23], linear response theory [24], phonon–electron interactions [25], peculiar velocities of
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galaxies [26], nonlinear dynamical systems [27], with promising results. For an extensive
and up-to-date bibliography, see [28].

For the microcanonical ensemble, Tsallis entropy is given by [13]

Sq = kW
1−q − 1

1− q . (1)

In the q → 1 limit, the q-entropy goes toS1 = k lnW . The distribution law for the
canonical ensemble in the Tsallis formalism is proportional to

pi ∝ [1− (1− q)βEi ]1/(1−q) (2)

whereβ is the Lagrange parameter and{Ei} is the energy spectrum. Equation (2) is reduced
to the usual Boltzmann distribution law,pi ∝ e−βEi1 , asq → 1. Note that equations (1) and
(2) suggest a form to introduce aq-logarithm and aq-exponential function by defining [29]

lnq x ≡ x1−q − 1

1− q expq x ≡ exq = [1+ (1− q)x]1/(1−q). (3)

It is immediately verified that lnq x and exq are inverse to each other. The ordinary logarithm
and exponential functions (here known as ln1 x and exp1 x, or ex1) are recovered whenq → 1.

Here we are mainly concerned with the study of theq-circular and q-hyperbolic
functions that the definitions given in equation (3) lead to. As a result, we show that
some such functions, introduced in this context of the Tsallis entropy, are solutions of a
nonlinear wave equation. Beyond that,q-generalizations of the Euler formula, Pythagoras
theorem and De Moivre theorem are deduced, as well as the roots of theq-sine andq-cosine
functions and the relation betweenq-circular andq-hyperbolic functions.

This paper is organized as follows. In section 2 we introduce theq-circular functions,
and establish some of its properties. In section 3 we extend this generalization to the
hyperbolic functions, and, finally, in section 4 we state the conclusions and final remarks.

2. Generalizedq-circular functions

If we expand expq x in Taylor series aroundx0 = 0, we find

expq x = 1+
∞∑
n=1

1

n!
Qn−1x

n (4)

with

Qn(q) ≡ 1 · q(2q − 1)(3q − 2) . . . [nq − (n− 1)]. (5)

Theq-exponential of an imaginary number ix leads to an expression that reminds us of the
Euler formula in complex analysis and we may write

expq(±ix) = cosq x ± i sinq x (6)

where cosq x and sinq x represent the generalizedq-cosine andq-sine functions, defined by

cosq x ≡ 1+
∞∑
j=1

(−1)jQ2j−1x
2j

(2j)!
sinq x ≡

∞∑
j=0

(−1)jQ2j x
2j+1

(2j + 1)!
. (7)

In the following we are going to show that cosq x and sinq x satisfy general forms of
the usual trigonometric relations. The ratio test shows that equations (4) and (7) converge
absolutely within the region|x| < |1− q|−1. In theq → 1 limit, Qn(1) = 1, ∀n ∈ N and
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these equations turn to the Taylor expansions of the ordinary exponential, cosine and sine
functions, converging for−∞ < x <∞. If we take theq-exponential written as

expq x = exp1

[
ln1[1+ (1− q)x]

1− q
]

∀x 6= 1

q − 1
(8)

and use the property of the 1-logarithm of a complex numberz = |z|eiφ
1 , namely

ln1 z = ln1 |z| + iφ, we find

cosq x = ρq(x) cos1[ϕq(x)] sinq x = ρq(x) sin1[ϕq(x)] (9)

where

ρq(x) = {expq [(1− q)x2]}1/2 ϕq(x) = arctan1[(1− q)x]

1− q · (10)

We also have

tanq x = tan1[ϕq(x)] (11)

where the generalizedq-tangent is defined as expected,

tanq x ≡ sinq x

cosq x
· (12)

According to our notation, cos1 x, sin1 x, and tan1 x are the usual cosine, sine and
tangent functions. Equations (9)–(11) are interesting because they allowq-cosines,q-sines
andq-tangents to be expressed in terms of known functions. Theq-cosine andq-sine are
composed by the product of two factors. The first,ρq(x), is responsible for the amplitude,
and the second is responsible for the oscillatory nature of these functions. In particular,
observe that theq-sine function presents

lim
x→0

sinq x

x
= 1 ∀q ∈ R. (13)

The behaviour of cosq x and sinq x for different values ofq > 1 andq < 1 are illustrated
by figures 1 and 2.

Figure 1. cos1.01x.



5284 E P Borges

Figure 2. sin0.99x.

Figure 3. Spiral diagrams forq = 1.01 (continuous curve) andq = 0.99 (broken curve).

The parametric representation of theq-cosine andq-sine(x = cosq t, y = sinq t, z = t)
represents a helix. Figure 3 shows the projection of the helix on thexy-plane, as viewed
from the positivez-side, for different values ofq. The spirals go to zero forq > 1 and
diverge forq < 1. If q → 1 the spiral degenerates into a circle (the usual circular functions).
The modulus of the radius vector of a pointt on the spiral is given by

cos2q t + sin2
q t = expq(it) expq(−it) = ρ2

q (t) (14)

that is the generalized Pythagoras theorem. These features keep a close analogy with the
usual trigonometric circle and suggest that we refer to them asq-spiral functions. The
number of rotations of these spiral diagrams isfinite, owing to the fact that there is an
absolute maximum value forϕq(t),

ϕmax
q = lim

t→∞ϕq(t) =
π

2

∣∣∣∣ 1

1− q
∣∣∣∣ (15)
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so that cosq t and sinq t oscillate indefinitely only ifq = 1. The number of roots of the
q-cosine (Nc) and that of theq-sine (Ns) are found to be

Nc = 2

[
int

(∣∣∣∣ 1

1− q
∣∣∣∣)− int

(
1

2

∣∣∣∣ 1

1− q
∣∣∣∣)] Ns = 2 int

(
1

2

∣∣∣∣ 1

1− q
∣∣∣∣)+ 1 (16)

where int(x) stands for the largest integer6 x. It means that cosq x has no roots forq 6 0
or q > 2; sinq x presents only one root(x = 0) for q 6 0.5 or q > 1.5. Within these
ranges, cosq x and sinq x present a finite number of roots (infinite number of roots occurs
only for q = 1).

It is straightforward to show thatφq(x) = expq(ikx) is anexactsolution of the following
nonlinear oscillator differential equation

d2[φ(x)]ν

dx2
+ γ 2[φ(x)]µ = 0 (17)

with

q = µ− ν
2
+ 1 k2 = 2γ 2

ν(µ+ ν) . (18)

Whenq → 1, we recover the simple harmonic oscillator. It is worth stressing that cosq x

and sinq x, taken individually, arenot solutions of equation (17), but only if combined as
equation (6).

If we take into account the fact that(expq x)
a = exp1−(1−q)/a(ax), and d expq x/dx =

(expq x)
q , together with equation (6), the derivatives of cosq x and sinq x may be expressed

as
d

dx
cosq x = − sin2−1/q(qx)

d

dx
sinq x = cos2−1/q(qx). (19)

We also have the generalization of the De Moivre theorem [30]:

(cosq x ± i sinq x)
a = cos1−(1−q)/a(ax)± i sin1−(1−q)/a(ax). (20)

We are now going to express theq-Euler formula for a complex numberz = x + iy.
In order to simplify the equations, let us introduce the functionζq ≡ ln1 ezq which satisfies
ζ1 = z. If we take the 1-exponential on both sides, we may express the generalized Euler
formula of a complex numberz as:

expq z = (exp1 χq)(cos1ψq + i sin1ψq) (21)

whereχq andψq are defined in such a way thatζq = χq + iψq , that is

χq ≡ ln1 |ωq |
1− q ψq ≡ arg(ωq)

1− q − π < (1− q)ψq 6 π (22)

with ωq = 1+ (1− q)z.
Another way to express theq-exponential of a complex number is

expq z = expq x

{
cosq

[
y

1+ (1− q)x
]
+ i sinq

[
y

1+ (1− q)x
]}
· (23)

This expression is valid provided that expq x is real and∀x 6= (q − 1)−1. This happens
for Re(ωq) > 0, or for integer values of 1/(1 − q). Equations (21) and (23) are the
q-generalized Euler formula for complex numbers. Equating one another, it results in

(expq x) cosq

[
y

1+ (1− q)x
]
= (exp1 χq) cos1ψq (24)

(expq x) sinq

[
y

1+ (1− q)x
]
= (exp1 χq) sin1ψq. (25)
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Dividing (25) by (24), we find

tanq

[
y

1+ (1− q)x
]
= tan1ψq. (26)

Equations (6), (9) and (11) are particular cases of equations (23)–(26) respectively, for
a pure imaginary number iy where exp1 χq/ expq x is the general form ofρq(x), andψq is
that ofϕq(x) (equations (10)).

The comparison of equation (21) with the ordinary Euler formula ez
1 = ex1(cos1 y +

i sin1 y) gives us an interesting remark: both ez
1 and ezq may be split into two factors, one

responsible for the amplitude and the other responsible for the oscillations. In ordinary
(q = 1) functions, the real and imaginary parts of a complex number are decoupled, so to
say, whereasq 6= 1 introduces a kind ofcouplingbetweenx andy, and both the amplitude
and the oscillator factors depend on both real and imaginary parts ofz.

3. Generalizedq-Hyperbolic functions

We are naturally tempted to extend these ideas to hyperbolic functions. So, let us assume
by definition

coshq x ≡
expq(x)+ expq(−x)

2
sinhq x ≡

expq(x)− expq(−x)
2

. (27)

These definitions lead us to the following relation:

cosh2q x − sinh2
q x = expq(x) expq(−x) = expq [−(1− q)x2] · (28)

The De Moivre theorem for theq-hyperbolic functions is given by

(coshq x + sinhq x)
a = cosh1−(1−q)/a(ax)+ sinh1−(1−q)/a(ax) (29)

and the derivatives of theq-hyperbolic functions are

d

dx
coshq x = sinh2−1/q(qx)

d

dx
sinhq x = cosh2−1/q(qx) · (30)

The connection between the usual circular and hyperbolic functions is established by
the definition of such functions of complex numbers. Here we are going to proceed in a
similar way, and we straightforwardly find:

coshq z = 1

2
coshq x

{
cosq

[
y

1− (1− q)x
]
+ cosq

[
y

1+ (1− q)x
]}

+1

2
i sinhq x

{
sinq

[
y

1− (1− q)x
]
+ sinq

[
y

1+ (1− q)x
]}

−1

2
sinhq x

{
cosq

[
y

1− (1− q)x
]
− cosq

[
y

1+ (1− q)x
]}

−1

2
i coshq x

{
sinq

[
y

1− (1− q)x
]
− sinq

[
y

1+ (1− q)x
]}

(31)

sinhq z = 1

2
sinhq x

{
cosq

[
y

1− (1− q)x
]
+ cosq

[
y

1+ (1− q)x
]}

+1

2
i coshq x

{
sinq

[
y

1− (1− q)x
]
+ sinq

[
y

1+ (1− q)x
]}

−1

2
coshq x

{
cosq

[
y

1− (1− q)x
]
− cosq

[
y

1+ (1− q)x
]}
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−1

2
i sinhq x

{
sinq

[
y

1− (1− q)x
]
− sinq

[
y

1+ (1− q)x
]}

(32)

with x 6= |1− q|−1.

4. Conclusions

We have developed a generalization of the usual circular and hyperbolic functions, based
on a q-exponential suggested by the Tsallis formalism of statistical mechanics. Such a
generalization is a consistentq-deformation of the logarithmic and exponential functions.

We have established some basic relations for the proposedq-trigonometry, for example,
the Euler formula, the Pythagoras theorem, the De Moivre theorem, the relation between
q-circular andq-hyperbolic functions. These relations keep a close analogy with the usual
ones and are reduced to them in theq → 1 limit.

The q-circular functions present oscillatory behaviour only within a range of values of
q (0 < q < 2 for theq-cosine and 0.5 < q < 1.5 for theq-sine). The number of roots of
these functions is finite, except ifq = 1, when they present an infinite number of roots.

We found thatφq(x) = expq(ikx) is an exact solution of the nonlinear oscillator
[φν ]′′ + γ 2φµ = 0, whereq and k are functions ofµ, ν and γ . The oscillations damp
for µ > ν (q > 1) and diverge forµ < ν (q < 1), when|x| → ∞.

The generalized Euler formula may be given by a product of an amplitude factor and
an oscillatory factor, but, in contrast to the usual Euler formula,both the amplitude and
oscillatory factors of ezq depend onboth the real and imaginary parts ofz.

Hopefully, the present generalization of the circular and hyperbolic functions, as well
as their associated properties, can play a useful role in the actively studied Tsallis statistics.
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